16(t)=-16(t)^2+20

Simple and best practice solution for 16(t)=-16(t)^2+20 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 16(t)=-16(t)^2+20 equation:



16(t)=-16(t)^2+20
We move all terms to the left:
16(t)-(-16(t)^2+20)=0
determiningTheFunctionDomain -(-16t^2+20)+16t=0
We get rid of parentheses
16t^2+16t-20=0
a = 16; b = 16; c = -20;
Δ = b2-4ac
Δ = 162-4·16·(-20)
Δ = 1536
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1536}=\sqrt{256*6}=\sqrt{256}*\sqrt{6}=16\sqrt{6}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-16\sqrt{6}}{2*16}=\frac{-16-16\sqrt{6}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+16\sqrt{6}}{2*16}=\frac{-16+16\sqrt{6}}{32} $

See similar equations:

| r-82=97 | | 10h-90=30 | | k/4=k/8-1/4 | | 4+7x+8x-5=180 | | 8c-7=33 | | 3x×2=-2x×3 | | k/4=k/8-1/4. | | 5(a+4)+15=8-4a | | q+6=89 | | 12p+5=3(p+5)−10 | | 2b−14=2 | | 3=p/5-2 | | r+-78=-85 | | 2-10q=-6-9q | | -(4+4)=3h | | 15=4u+7 | | ⅕(10-4x)=2x+4 | | 2/3x-5=5/6x-1 | | 3=p/5-3 | | 31x+6+130=180 | | 3(4g+)6=2(6g+9)3(4g+ | | 9x-10/12x=0 | | u-24=37 | | X+120+156+145+(x+9)=720 | | 2y+(-7)=23 | | 4x-13+x=-2x-(x+45) | | 3y-4y=30 | | 4(-8x+5)=32x=36 | | x^2=4x=27 | | 2x-6x-15=4x+7-15 | | b+14=-79 | | -6x+28=-8x+12 |

Equations solver categories